

Supergiant shells

~ 1000 pc

 $\sim 10^7 \text{ yr}$

(multi generations)

Superbubbles

~ 100 pc

 $\sim 10^6 \text{ yr}$

(OB associations)

Bubbles, SNRs

~ 10 - 50 pc

 $\sim 10^3 - 10^5 \text{ yr}$ (single star)

 $R - H\alpha$

G - [S II]

B - [O III]

Interstellar Bubble Model

Weaver et al. 1977

Interstellar Bubble Model

Weaver et al. 1977

Schematic Bubble Structure

Weaver et al. 1977

I. Hot Bubble Interior

X-ray emission from bubble interior

Hot Gas in the Orion Nebula

 $T \sim 2 \times 10^6 \text{ K}$ $Lx \sim 5.5 \times 10^{31 \text{ erg/s}}$ 3.5 pc in diameter Güdel et al. 2008

Hot Gas in the Omega Superbubble

Two young superbubbles are detected in X-rays by Chandra: Omega and (Rosette)

ROSAT - Dunne et al. 2003, ApJ, 590, 306

Chandra - Townsley et al. 2003, ApJ, 593, 874

Red: Ha Blue: X-ray

Red: Hα Blue: X-ray

Red: Ha Green: [O III] Blue: X-ray

Red: Ha Green: [O III] Blue: X-ray

LMC Superbubbles N44 and N51D

Chu et al. 1993, ApJ

Cooper et al. 2004, ApJ

X-ray Observations of Bubbles

- Detection of hot gas associated with fast winds
 - 12 PNe, 2 WR bubbles, several superbubbles
- Properties of the hot gas:

1	T _e [10 ⁶ K]	N_e [cm ⁻³]	L _X [erg/s]
PN	$1-3 \times 10^6$	100	$10^{31} - 10^{32}$
WR	$1-2 \times 10^6$	1	$10^{33} - 10^{34}$
M17	7×10^{6}	0.3	10^{33}
Orion Eridanus	2 ×10 ⁶	0.2-0.5	5×10^{31}
LMC SBs	99	>>	up to 10 ³⁵

Nonthermal X-ray Emission

0.2 keV thermal + power-law

30 Dor C - Bamba et al.

- Smith, Wang

RCW38 - Wolk et al.

N51 - Cooper et al.

N11 - Maddox et al.

Parizot et al. 2004 acceleration by repeated shocks and turbulence

Synchrotron?
Inverse Compton?
???

I. Hot Bubble Interior

- X-ray emission from bubble interior is soft
- ISM absorbs soft X-ray emission
- X-ray emission depends on:
 wind properties
 concentration of massive stars
 - clumpy structure of the ambient medium
 - magnetic fields supernova explosions
- Nonthermal X-ray emission!!!

II. Dense Swept-up Shell

Hα from H II shell, 21-cm from HI shell

HII and HI Shells of N11

HII and HI Shells of N57

HII and HI Shells of N51

III. Conduction Layer

- Probe the thermal conduction layer High ions produced by thermal collisions

Probes of the Conduction Layer

CIV NVO VI $\lambda\lambda$ (Å) 1548, 1550 1238, 1242 1031, 1037 Obs. HST/STIS HST/STIS **FUSE I.P.** (eV) 138.1 47.9 77.5 Collisional ionization **(K)** $T^*_{eff}(K)$ Photo-ionization

OVI Absorption vs. Emission

Stellar P Cygni profile; nebular O VI emission

FUSE Observations of NGC 6543

Circumstellar WR Bubble 5 308

Boroson et al. (1997) detected N V absorption from the conduction layer.

HST STIS observation of N V and C VI emission was scheduled, but STIS died.

FUSE observations of O VI were awarded, and it died, too.

Spitzer can observe Ne V, but it is running out cryogen.

R: Ha G: [O III] B: X-ray

O VI Emission Detected in Superbubbles N185, N186E Sankrit & Dixon 2007

III. Conduction Layer

- Probe the thermal conduction layer with high ions produced by thermal collisions
- NGC 6543: given the boundary conditions of hot interior and warm shell, thermal conduction appears to be consistent, but does not explain the low X-ray luminosity.
- O VI emission studies avoid contamination from hot halo gas SPEAR - O VI emission from Eridanus (Kregenow et al. 2006)

Final Words

Multi-wavelength observations

are needed to study the physical structure of ISM bubbles.

ISM bubbles need to be studied in conjunction with the history and distribution of massive Star formation.

